高二数学教学计划

时间:2024-07-13 20:11:46
高二数学教学计划15篇

高二数学教学计划15篇

时光飞逝,时间在慢慢推演,又将迎来新的工作,新的挑战,写一份计划,为接下来的工作做准备吧!你所接触过的计划都是什么样子的呢?以下是小编为大家收集的高二数学教学计划,供大家参考借鉴,希望可以帮助到有需要的朋友。

高二数学教学计划1

一、指导思想

1、培养学生的逻辑思维能力、运算能力、空间想象能力,以及综合运用有关数学知识分析问题和解决问题的能力、使学生逐步地学会观察、分析、综合、比较、抽象、概括、探索和创新的能力;运用归纳、演绎和类比的方法进行推理,并正确地、有条理地表达推理过程的能力、

2、根据数学的学科特点,加强学习目的性的教育,提高学生学习数学的自觉心和兴趣,培养学生良好的学习习惯,实事求是的科学态度,顽强的学习毅力和独立思考、探索创新的精神、

3、使学生具有一定的数学视野,逐步认识数学的科学价值、应用价值和文化价值,形成批判性的思维习惯,崇尚数学的理性精神,体会数学的美学意义,理解数学中普遍存在着的运动、变化、相互联系和相互转化的情形,从而进一步树立辩证唯物主义和历史唯物主义世界观、

二、目的要求

1、深入钻研教材,以教材为核心,“以纲为纲,以本为本”深入研究教材中章节知识的内外结构,熟练把握知识的逻辑体系和网络结构,细致领会教材改革的精髓,把握通性通法,逐步明确教材对教学形式、内容和教学目标的影响、

2、因材施教,以学生为学习的主体,构建新的认知体系,营造有利于学生学习的氛围、

3、加强课堂教学研究,科学设计教学方法,扎实有效的提高课堂教学效果,全面提高数学教学质量、

三、具体措施

1、不孤立记忆和认识各个知识点,而要将其放到相应的体系结构中,在比较、辨析的过程中寻求其内在联系,达到理解层次,注意知识块的复习,构建知识网路、注重基础知识和基本解题技能,注意基本概念、基本定理、公式的辨析比较,灵活运用;力求有意识的分析理解能力;尤其是数学语言的表达形式,推力论证要思路清晰、整体完整、

2、学会分析,首先是阅读理解,侧重于解题前对信息的捕捉和思路的探索;其次是解题回顾,侧重于经验及教训的总结,重视常见题型及通法通解、

3、以“错”纠错,查缺补漏,反思错误,严格训练,规范解题,养成:想明白,写清楚,算准确的习惯,注意思路的清晰性、思维的严谨性、叙述的条理性、结果的准确性,注重书写过程,举一反三,及时归纳,触类旁通,加强数学思想和数学方法的应用、

4、协调好讲、练、评、辅之间的关系,追求数学复习的最佳效果,注重实效,努力提高复习教学的效率和效益;精心设计教学,做到精讲精练,不加重学生的负担,避免“题海战” ,精心准备,讲评到为,做到讲评试卷或例题时:讲清考察了那些知识点,怎样审题,怎样打开解题思路,用到了那些方法技巧,关键步骤在那里,哪些是典型错误,是知识和是逻辑,是方法、是心理上、策略上的错误,针对学生的错误调整复习策略,使复习更加有重点、针对性,加快教学节奏,提高教学效率、

5、周密计划合理安排,现数学学科特点,注重知识能力的提高,提升综合解题能力,加强解题教学,使学生在解题探究中提高能力、

6、多从“贴近教材、贴近学生、贴近实际”角度,选择典型的数学联系生活、生产、环境和科技方面的问题,对学生进行有计划、针对性强的训练,多给学生锻炼各种能力的机会,从而达到提升学生数学综合能力之目的、不脱离基础知识来讲学生的能力,基础扎实的学生不一定能力 强、教学中,不断地将基础知识运用于数学问题的解决中,努力提高学生的学科综合能力、

高二数学学习方法

(1)制定计划明确学习目的。合理的学习计划是推动我们主动学习和克服困难的内在动力。计划先由老师指导督促,再一定要由自己切实完成,既有长远打算,又有短期安排,执行过程中严格要求自己,磨炼学习意志。

(2)课前预习是取得较好学习效果的基础。课前预习不仅能培养自学能力,而且能提高学习新课的兴趣,掌握学习的主动权。预习不能搞走过场,要讲究质量,力争在课前把教材弄懂,上课着重听老师讲思路,把握重点,突破难点,尽可能把问题解决在课堂上。

(3)上课是理解和掌握基本知识、基本技能和基本方法的关键环节。上课专心听重点难点,把老师补充的内容记录下来,而不是全抄全录,顾此失彼。

(4)及时复习是提高效率学习的重要一环。通过反复阅读教材,多方面查阅有关资料,强化对基本概念知识体系的理解与记忆,将所学的新知识与有关旧知识联系起来,进行分析比效,一边复习一边将复习成果整理在笔记本上,使对所学的新知识由“懂”到“会”。

(5)独立作业是通过自己的独立思考,灵活地分析问题、解决问题,进一步加深对所学新知识的理解和对新技能的掌握过程。这一过程也是对我们意志毅力的考验,通过运用使我们对所学知识由“会”到“熟”。

(6)解决疑难是指对独立完成作业过程中暴露出来对知识理解的错误,或由于思维受阻遗漏解答,通过点拨使思路畅通,补遗解答的过程。解决疑难一定要有锲而不舍的精神。做错的作业再做一遍。对错误的地方没弄清楚要反复思考。实在解决不了的要请教老师和同学,并要经常把易错的地方拿来复习强化,作适当的重复性练习,把求老师问同学获得的东西消化变成自己的知识,长期坚持使对所学知识由“熟”到“活”。

(7)系统小结是通过积极思考,达到全面系统深刻地掌握知识和发展认识能力的重要环节。小结要在系统复习的基础上以教材为依据,参照笔记与资料,通过分析、综合、类比、概括,揭示知识间的内在联系,以达到对所学知识融会贯通的目的。经常进行多层次小结,能对所学知识由“活”到“悟”。

(8)课外学习包括阅读课外书籍与报刊,课外学习是课内学习的补充和继续,它不仅能丰富同学们的文化科学知识,加深和巩固课内所学的知识,而且能够满足和发展我们的兴趣爱好,培养独立学习和工作的能力,激发求知欲与学习热情。

高二数学教学计划2

一.指导思想

根据湖北省的新课改教学实施指导意见,结合我们学校的实际教学情况,发挥备课组的集体力量,全力以赴的完成本学期的教学任务。同时加强对新课改理念的学习,相互协作,积极面对新课改的要求。

二.工作重点

认真落实组里每位老师的课堂常规教学任务,努力加强老师的课外教学科研工作;积极学习新课改的理论知识,认真研究新教材的教法,做一个教学科研全方位的教师;同时发挥备课组全体成员的集体力量,积极研讨新教材的教学内容,全力提升高二年级的数学水平,缩小和其它学校的差距。

三.具体措施

(1)落实好组里每位老师的两节公开课的任务,按照先议教案,再听课堂,最后评价的程序严格落实到位。

(2)充 ……此处隐藏16092个字……的语言来描述几何图形,例如“点”可以用“数对”表示,“曲线”可以用“方程”表示等;第二,把几何问题转化为代数问题,例如,“两直线平行”可以转化为“两直线方程组成的方程组无解”等;第三,实施代数运算,求解代数问题;第四,将代数解转化为几何结论。随着数学本身的发展,出现了代数数论、代数几何等的数学分支,而拓扑学、泛函等代数工具都可以作为研究心得曲线和曲面的工具,这些都是“解析几何思想”的发展个推广。解析几何初步的重点是帮助学生理解解析几何的基本思想,即把代数作为一种工具和手段来研究几何问题。

3。“坐标系”是解析几何思想的主要组成部分,因为建立了坐标系,就能把曲线和曲面的性质用代数来表示,从而把几何问题转化为代数问题来解决。适当地选择坐标系可以大大简化对图形性质的研究,但图形的性质不会竖着坐标系的变化而改变。我们要研究的正是那些和坐标系的选择无关的性质;或者说建立坐标系正是为了摆脱图形对坐标系的依赖,这在对数上就表现为某个线性变换群下的不变量和不变关系。

4。圆锥曲线是我们生活中最基本的图形。①圆锥曲线(面)可以帮助我们刻画一些基本的运动。例如,太阳系中,八大行星的运动轨迹都是椭圆。②光学性质和圆锥曲线是密不可分的,基本的光学性质都是由圆锥曲线体现出来的。例如,探照灯就是利用抛物面的光学性质制作而成的,它可以将点光源发出的光折射成平行光,照射到足够远的地方。几乎所有的光学仪器都是依照圆锥曲线(面)的性质制成的。③研究圆锥曲线(面)的性质时体现解析几何本质的最好载体,即便是在大学数学系的学习中,如何利用方程的系数确定二次曲线的形状,揭示其规律也是数学的经典内容。

  教育分析

1。有助于学生数形结合思想的培养。

解析几何的本质是用代数的方法研究图形的几何性质,它沟通了代数与几何之间的联系,体现了数形结合的重要思想。在解析几何初步的学习中,经历将几何问题代数化、处理代数问题、分析代数结果的几何含义、解决几何问题的过程,有助于学生认识数学内容之间的内在联系,体会数形结合的思想,形成正确的数学观。

2。是培养学生运算能力的重要载体。

运算思想是数学中最重要的思想之一。解析几何的运算,往往有较强的综合性,设计相应的代数方程知识(包括消元思想、整体思想、函数思想、同解原理、韦达定理、方程的解、构造不等式、参变量代换、求解不等式)等内容,对学生计算能力要求较高。在解决解析几何问题时,要注重“数”与“形”的统一,在计算时,要结合图形自身的特点,充分挖掘图形的几何结论,这往往是解决问题的突破口和简化解题过程的有效方法。比如,涉及圆的问题时,注重运用圆的相关几何性质,对于直线与圆的位置关系要强化几何处理,淡化代数处理方法,解析几何独有的特点,最培养学生的运算能力起到了独特的作用。

  课标解读

1。整体定位

“解析几何初步”研究的问题是直线和圆,及其之间的关系,还有空间直角坐标系的概念。高中阶段解析几何内容的分布,除了“解析几何初步”外,在选修系列1,2中,都延续了解析几何的内容,设计了“圆锥曲线与方程”。在选修系列4的《几何证明选讲》中,还将继续研究圆锥曲线。研究圆锥曲线有两种方法:综合几何的方法和解析几何的方法。在选修系列4的《几何证明选讲》中,运用了综合几何的方法。

“解析几何初步”是要依托直线的方程与圆的标准方程,让学生把握用代数方法解决几何问题的基本步骤,初步形成代数方法解决几何问题的能力,帮助学生理解解析几何的基本思想。

2。具体要求

(1)直线与方程

①在平面直角坐标系中,结合具体图形,探索确定直线位置的几何要素;

②理解直线的倾斜角和斜率的概念,经历用代数方法刻画直线斜率的过程,掌握过两点的直线斜率的计算公式;

③能根据斜率判定两条直线平行或垂直;

④根据确定直线位置关系的几何要素,探索并掌握直线方程的几种形式(点斜式、两点式及一般式),体会斜截式与一次函数的关系;

⑤能用解方程组的方法求两直线的交点坐标;

⑥探索并掌握两点间的距离公式、点到直线的距离公式,会求两条平行直线间的距离。

(2)圆与方程

①回顾确定圆的几何要素,在平面直角坐标系中,探索并掌握圆的标准方程与一般方程;

②能根据给定直线、圆的方程,判断直线与圆、圆与圆的位置关系;

③能用直线和圆的方程解决一些简单的问题。

(3)在平面“解析几何初步”的学习过程中,体会用代数方法处理几何问题的思想。

(4)空间直角坐标系

①通过具体情境,感受建立空间直角坐标系的必要性,了解空间直角坐标系,会空间直角坐标系刻画点的位置;

②通过表示特殊长方体(所有棱分别与坐标轴平行)顶点的坐标,探索并得出空间两点间的距离公式。

《标准》中对“解析几何初步”的要求只是阶段性要求,在选修系列1,2中,还将进一步学习圆锥曲线与方程的内容。因此,对本部分内容的教学要把握好“度”,特别是对于解析几何思想的理解不能要求一步到位。

3。课标解读

(1)要注重知识的发生与发展的过程

解析几何初步的教学,要注重知识的发生与发展的过程,首先将几何问题代数化,用代数的语言描述几何元素及其关系,进而将几何问题代数化;处理代数问题;分析代数结果的几何含义,最终解决几何问题。同时,应强调借助几何直观理解代数关系的意义,即对代数关系的几何意义的解释。让学生在这样的过程中,不断地体会“数形结合”的思想方法。

数学课程应返璞归真,努力揭示数学概念、法则、结论的发展过程和本质,要通过学生的自主探索活动,使学生理解数学概念、结论逐步形成的过程,体会蕴涵在其中的思想方法。在解析几何初步的教学中,同样要通过观察、操作探索,确定直线与圆的几何要素,并由此探索掌握直线与圆的几种形式的方程,探索掌握一些距离公式。

比如如何在平面直角坐标系中描述直线,这是解析几何教学中遇到的第一个问题。在坐标系中,一条直线或者与x轴平行,或者与x轴相交。与x轴平行的直线的代数特征很简单,这条直线上的点的纵坐标是个常数,即y=a。除了x=a,还有什么方法可以刻画与x轴相交的直线?也就是如何用代数的方法刻画直线的斜率。

(2)在高中阶段,直线的斜率一般一般有三种表示方式

①用倾斜角的正切

这是传统教材的方式,由于倾斜角是大于等于0°小于180°,倾斜角与其正切一一对应的(90°除外);当然,也可以用倾斜角的余弦值表示直线的斜率,倾斜角与其余弦值是一一对应的,但这种表示要复杂一些,一般都选择使用倾斜角的正切。

这需要先引入0°到180°的正切函数的概念。

②用向量

  内容结构

1。知识内容

2。 章节安排

本章教学时间约需18课时,具体分配如下:

1 直线与直线的方程 8课时

2 圆与圆的方程 5课时

3 空间直角坐标系 3课时

《高二数学教学计划15篇.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式